研究人员在前期研究中发现将铁丝浸没到水凝胶预聚液中后

2020-05-07 作者:科技产业   |   浏览(62)

ds足球即时比分 1

发展通用的表面修饰技术是实现材料功能化的有效途径之一。目前已有的表面修饰策略所用的表面修饰物主要以链状聚合物、大分子以及小分子化合物为主,尚无技术能够在材料表面可控修饰机械耐受性更好的水凝胶涂层,从而实现界面动态减摩抗磨。

做过胃肠镜和插过导尿管的人都会知道,硬塑料橡胶在人体柔软组织中拖动摩擦所带来的痛苦。而且,导尿管等医疗器械表面容易粘附细菌、生长异物。这些问题困扰着全球几千万人。水凝胶柔软多水,表面光滑抗菌,是和人体接触的最好界面。可是怎么让各种医疗仪器,例如导尿管、内窥镜等附上一层足够厚又耐用的水凝胶涂层?该问题一直是医疗仪器和软材料领域的一大挑战。

近日,中国科学院兰州化学物理研究所研究员周峰团队发展出表面催化引发自由基聚合技术(surface catalytically initiated radical polymerization, 简称SCIRP,图1),成功实现界面动态减摩抗磨。

MIT赵选贺团队在2015年首次提出了水凝胶坚韧粘附的机理 (图1aNature Materials15, 190-196 (2016)): 水凝胶本体要足够坚韧和有耗散性,而且水凝胶和黏附物间要有足够强的链接。使用该机理,赵选贺团队在2016年首次实现了水凝胶和各种医用塑料橡胶材料的坚韧粘附 (图1bNature Comm7, 12028 (2016)), 并在2017年首次实现了对简单形状医疗仪器的坚韧水凝胶涂层 (Advanced Healthcare Materials6, 1700520 (2017))。可是医疗仪器通常都有复杂的形状,其内外表面都可能不平整 (图1c)。

受摩擦学中“原位摩擦聚合理念”启发,研究人员在前期研究中发现将铁丝浸没到水凝胶预聚液中后,室温下铁丝表面会聚合形成一层具有低摩擦系数的透明水凝胶膜。当水凝胶膜被破坏之后,铁丝表面会重新生成新的凝胶润滑膜。以氮化硅为对偶、水凝胶预聚液为润滑介质、不锈钢板材作为基体材料的长磨测试过程中,研究人员观察到了原位的减摩和抗磨现象。这种现象背后的科学机制为:磨损区域暴露出的二价铁和预聚液中的过硫酸根离子发生氧化还原反应,降低了自由基聚合过程中链引发步的活化能,使得磨损区域在室温下能够原位地生成水凝胶润滑膜。

在复杂形状医疗仪器上如何实现柔软、耐用和足够厚的水凝胶涂层(图1c)?MIT赵选贺团队和华中科技大学臧剑锋团队合作给出了答案: 让复杂医疗仪器表面长出一层可控厚度的柔软耐用的水凝胶皮肤。论文发表在Advanced Materials上(1807101 (2018)),华中科技大学臧剑锋团队青年教师喻研,MIT博士生Hyunwoo Yuk,German Parada为论文共同第一作者,MIT赵选贺教授为论文通讯作者。

基于以上实验结果,研究人员发展了一种通用的水凝胶表面修饰技术。随后,通过不同的成型技术将铁催化剂复合到了不同的基体材料中(包括聚氨酯、环氧树脂、聚四氟乙烯、PDMS、PTFE、偏氟乙烯、UHMWPE、PEEK、陶瓷、金属间化合物等),制备得到了含铁催化剂的一系列复合材料。

现有的方法例如浸渍涂布法等很难得到均匀厚度的水凝胶涂层,不适用于医疗仪器内表面和复杂表面。合作团队提出了一个全新的方法。他们将现有的医疗仪器材料 (硅橡胶,聚氨酯,聚氯乙烯,丁腈橡胶,乳胶等)的表面10~100微米通过等离子处理和溶胀渗透变得稀疏亲水。然后让水凝胶在这10~100微米的变性层中生长,形成天然的双网络水凝胶结构 (图2)(注:双网络坚韧水凝胶由Jianping Gong教授提出,并非本工作原创,Advanced Materials15,1155,(2003))。双网络水凝胶坚韧有耗散性,同时水凝胶层和医疗仪器间保持了强链接,符合水凝胶坚韧粘附的机理 (图1aNature Materials15, 190-196 (2016))。

实验结果表明,在室温下将复合材料浸入到水凝胶预聚液中,经过很短的反应时间复合材料表面即可通过原位聚合包覆一层均匀的水凝胶膜,进而快速地改变了材料表面的润湿和润滑特性。其间,水凝胶膜厚度及网络结构可通过聚合反应动力学精准控制。研究人员将这一新方法命名为SCIRP。实现过程中,研究人员还发现SCIRP具有多次连续引发聚合特征,即在无需去除原有材料表面第一层水凝胶涂层的前提下,第二种或第三种凝胶单体可在材料表面发生连续聚合,形成多网络或者梯度结构水凝胶涂层。最近该成果在线发表在《先进材料》(Advanced Materials)上。

ds足球即时比分 ,该方法可以让市面上买到的医疗仪器表面直接长出柔软耐用的水凝胶皮肤,简单、实用、安全、高效。另外水凝胶皮肤可以在干燥的状态下储存,使用前直接润湿, 不影响效果。

随后,基于水凝胶材料成型较难的现实和复杂结构水凝胶管简易制备的技术需要,研究人员又通过化学聚合成功制得复杂结构三维水凝胶管材料。他们发现当以铁丝或棒状含铁复合材料作为生长模板时,移除模板后可获得中空水凝胶管。利用此方法,研究人员拓展了凝胶管的化学组分,成功制备得到了8至9种不同化学组分的水凝胶管材料。通过使用多根铁丝作为生长模板,可制备得到具有复杂结构的三维水凝胶管材料。

该方法既可以在宏观尺度的具有复杂形状的高分子表面上制备水凝胶皮肤,也可以在微观尺度的具有复杂形状的高分子表面上制备水凝胶皮肤。如图3a所示,我们在厘米尺寸的八角桁架形硅橡胶上均匀制备了一层水凝胶皮肤。并且,如图3b所示,我们在具有微米级 沟槽的硅橡胶微流控芯片上均匀制备了一层水凝胶皮肤。(通过对水凝胶皮肤进行绿色染料的扩散,可以清楚地看到整个表面被水凝胶皮肤完全覆盖)

该项工作是材料学界第一次从化学聚合角度成功制得中空水凝胶管材料,单体普适性较强,与传统的模板浇筑法和3D打印挤出成型技术相比具有明显区别。研究人员将制得的中空水凝胶管作为人工血管组织模型体与内皮细胞进行共培养,发现在培养12天之后,凝胶管内壁形成了连续的内皮层,并出现了α-平滑肌肌动蛋白 (α-smooth muscle actin,α-SMA) 的特异性表达,表明制得的凝胶管具有用作人工血管模型的潜力。最近,该研究在线发表在《材料化学》(Chemistry of Materials,DOI: 10.1021/acs.chemmater.8b02532)上。

同时,该方法还能够便捷地对水凝胶皮肤的厚度和粗糙度等进行控制,从而满足不同的应用需求。我们仅仅通过在单体水溶液中添加/不添加微量链转移剂(其它工艺完全一致),就可以得到厚度和粗糙度具有显著区别的水凝胶皮肤。

基于SCIRP方法,研究人员已经发展了一系列功能性材料,包括层状人工血管模型材料、水下软驱动材料、智能微流控材料、生物润滑材料、亲水减阻材料以及乳液分离材料等。以上工作得到国家自然科学基金和科技部重点研发计划等的支持。

ds足球即时比分 2

图1 表面催化引发自由基聚合技术(surface catalytically initiated radical polymerization- SCIRP)用于在材料表面修饰水凝胶涂层示意图和决速步活化能分布曲线图

ds足球即时比分 3

图2 铁表面引发聚合策略用于构筑复杂结构高强度水凝胶管材料

本文由ds足球即时比分发布于科技产业,转载请注明出处:研究人员在前期研究中发现将铁丝浸没到水凝胶预聚液中后

关键词: